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Abstract

The problem of optimal tracking control with zero steady-state error for linear time-delay systems with sinusoidal

disturbances is considered. Based on the internal model principle, a disturbance compensator is constructed such that the

system with external sinusoidal disturbances is transformed into an augmented system without disturbances. By

introducing a sensitivity parameter and expanding power series around it, the optimal tracking control problem can be

simplified into the problem of solving an infinite sum of linear optimal control series without time-delay and disturbance.

The obtained optimal tracking control law with zero steady-state error consists of accurate linear state feedback terms and

a time-delay compensating term, which is an infinite sum of an adjoint vector series. The accurate linear terms can be

obtained by solving a Riccati matrix equation and a Sylvester equation, respectively. The compensation term can be

approximately obtained through a recursive algorithm. A numerical simulation shows that the algorithm is effective and

easily implemented, and the designed tracking controller is robust with respect to the sinusoidal disturbances.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many practical control systems located in hostile marine environment, such as a fully submerged hydrofoil
craft [1], off-shore platform [2,3], ships [4], etc., undergo excessive vibrations due to wave loads. The vibrations
of wave-induced loads acting on the control systems can be considered as external sinusoidal disturbances.
The influence with respect to waves must be taken into account. Especially in tracking control systems, in
order to obtain a good tracking performance, it is necessary to find the effective active vibration control
strategy. There are many good approaches to this problem, for instance, internal model based control [5] and
adaptive tracking control [6]. These approaches can achieve disturbance rejection and global asymptotic
tracking with zero steady-state error, but neither of them took the optimality problem into account. Sinusoidal
disturbance is a typical disturbance in the vibration control systems. The sinusoidal disturbance rejection for
servo systems has long intrigued many control theorists and engineers. Tang [7] and Lindquist et al. [8]
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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proposed feedforward and feedback optimal damping controllers based on quadratic average performance
index for linear continuous and discrete systems with sinusoidal disturbances. However, the feedforward and
feedback optimal damping controllers cannot guarantee the closed-loop systems with zero steady-state error.

In real industrial processes, the phenomenon of time delays is quite common. The optimal control problems
for time-delay systems with quadratic performance index generally lead to a two-point boundary value
(TPBV) problem with both time-delay and time-advance terms, which is very difficult to be solved precisely.
So solving an approximate optimal control law is one of the important aims of researchers. At present, many
better results in the approximate approach of optimal control for time-delay and/or nonlinear systems have
been obtained [9–11], but quite few results have been available to optimal tracking control with zero steady-
state error for time-delay systems with sinusoidal disturbances. Therefore, the studies of the optimal tracking
control with zero steady-state error for time-delay systems with sinusoidal disturbances are of quite
significance.

In this paper, we consider the optimal tracking control with zero steady-state error for linear time-delay
systems with sinusoidal disturbances. The disturbance rejection and optimal tracking controller are designed,
respectively. A sinusoidal disturbance compensator is first constructed based on the internal model principle.
Then the plant model with external disturbances is transformed into an augmented system without
disturbances. For the augmented system, we choose an infinite-time horizon quadratic cost functional.
Therefore, solving the problem of disturbance rejection for zero steady-state tracking error becomes designing
an optimal tracking controller for the augmented system. By introducing a sensitivity parameter e, the
variables of the systems are extended to Maclaurin series at e ¼ 0. The original optimal tracking control
problem is translated into a series of TPBV problems without delay and advance terms. Then by solving the
TPBV problem sequences recursively, we obtain the optimal tracking control law consisting of linear state
feedback terms and a compensation term. The linear terms can be uniquely obtained by solving a Riccati

matrix equation and a Sylvester matrix equation. The compensation term can be obtained by a recursion
formula of adjoint vectors. By intercepting a finite sum of the series, we obtain an approximate optimal
control law that minimizes the cost functional.

The organization of the paper is as follows. In Section 2, the problem is precisely formulated and the basic
assumptions are stated. In Section 3, a disturbance compensator is constructed based on the internal model
principle. Section 4 designs an optimal tracking controller with zero steady-state error for time-delay systems
by using a sensitivity approach. Section 5 shows simulation results and Section 6 concludes the work.

2. Problem statement

Consider the following linear time-delay system with sinusoidal disturbances

_xðtÞ ¼ AxðtÞ þ A1xðt� tÞ þ BuðtÞ þDvðtÞ; t40,

xðtÞ ¼ fðtÞ; �tptp0,

yðtÞ ¼ CxðtÞ, ð1Þ

where xARn, uARr, vARr, and yARp are the state, the control input, the disturbance, and the output vectors,
respectively; A, B, C, and D are constant matrices of appropriate dimensions. f(t) is a given continuous initial
state function. t is a positive time-delay. Assume that the pair (A,B) is completely controllable, the pair (A,C)
is completely observable, and

Rank B ¼ RankðB DÞ ¼ r. (2)

Disturbance vector v can be given by

v ¼

v1

v2

..

.

vr

2
66664

3
77775 ¼

a1 sinðo1tþ j1Þ

a2 sinðo2tþ j2Þ

..

.

ar sinðortþ jrÞ

2
666664

3
777775, (3)
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where the frequency oi is known constant, the amplitude ai and the phase ji may be unknown. Assume that
the reference input (desired output) ~y is given by the following exosystem:

_zðtÞ ¼ FzðtÞ,

~yðtÞ ¼ HzðtÞ, ð4Þ

where zARm, ~y 2 Rp; F and H are constant matrices of appropriate dimensions. We assume that

Assumption 1. Eq. (4) is stable, but unnecessary asymptotically stable.

Assumption 2. The pair (F,H) is completely observable, and Rank(H) ¼ p.

The aim is to find a control law such that the output tracking error

eðtÞ ¼ ~yðtÞ � yðtÞ, (5)

satisfies

eð1Þ ¼ lim
t!1
ð ~yðtÞ � yðtÞÞ ¼ 0,

in an optimal fashion. Since Eq. (1) is affected by the external sinusoidal disturbances, it is obvious that the
control vector u will not tend to zero in the zero steady-state tracking error control system. The traditional
infinite-time horizon quadratic cost functional associated with Eq. (1) is not convergent.

3. Design of disturbance compensator

In this section, a disturbance compensator based on the internal model principle will be constructed. The
system with disturbances is transformed into an augmented system without disturbances. In this augmented
system, we first define a function ūðtÞ as a virtual ‘‘control vector’’ of u(t). Then we choose an infinite-time
horizon quadratic cost functional with respect to tracking error and control law of the augmented system.
Therefore, the problem becomes designing an optimal tracking controller for the augmented system.

From Eq. (2), there exists the unique invertible matrix MARr� r such that D ¼ BM holds. Therefore, Eq. (1)
may be rewritten as

_xðtÞ ¼ AxðtÞ þ A1xðt� tÞ þ BðuðtÞ þ wðtÞÞ; t40,

xðtÞ ¼ fðtÞ; �tptp0,

yðtÞ ¼ CxðtÞ, ð6Þ

where w(t) ¼Mv(t). Note that from Eq. (3)

€vðtÞ ¼ �OvðtÞ, (7)

where

O ¼ Diag o2
1;o

2
2; . . . ;o

2
r

� �
.

Hence

€wðtÞ ¼ �MOvðtÞ ¼ �MOM�1wðtÞ. (8)

Let

x̄1ðtÞ ¼ xðtÞ,

x̄2ðtÞ ¼ uðtÞ þ wðtÞ,

x̄3ðtÞ ¼ _̄x2ðtÞ ¼ _uðtÞ þ _wðtÞ, ð9Þ

then

_̄x2ðtÞ ¼ x̄3ðtÞ,

_̄x3ðtÞ ¼ �MOM�1x̄2ðtÞ þ ½ €uðtÞ þMOM�1uðtÞ�. ð10Þ
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Let

x̄ðtÞ ¼

xðtÞ

x̄2ðtÞ

x̄3ðtÞ

2
664

3
775 ¼

xðtÞ

uðtÞ þ wðtÞ

_uðtÞ þ _wðtÞ

2
664

3
775,

ūðtÞ ¼ €uðtÞ þMOM�1uðtÞ. ð11Þ

By Eqs. (6), (10), and (11), we can obtain the (n+2r)-dimensional augmented system without disturbances

_̄xðtÞ ¼ Āx̄ðtÞ þ Ā1x̄ðt� tÞ þ B̄ūðtÞ; t40,

x̄ðtÞ ¼ f̄ðtÞ; �tptp0,

ȳðtÞ ¼ C̄x̄ðtÞ, ð12Þ

where

Ā ¼

A B 0

0 0 I

0 �MOM�1 0

2
664

3
775; B̄ ¼

0

0

I

2
664
3
775; Ā1 ¼

A1 0 0

0 0 0

0 0 0

2
664

3
775,

C̄ ¼

CT

0

0

2
664

3
775
T

; f̄ðtÞ ¼

fðtÞ

x̄2ð0Þ

x̄3ð0Þ

2
664

3
775, ð13Þ

and I is an identity matrix.
We choose the following infinite-time horizon quadratic cost functional associated with the augmented

system in Eq. (12)

J ¼

Z 1
0

eTðtÞQeðtÞ þ ūTðtÞRūðtÞ
� �

dt, (14)

where Q and R are positive-definite matrices, respectively.
Thus, the original optimal tracking control problem with zero steady-state error becomes finding the

optimal tracking ‘‘control law’’ ūnðtÞ of the augmented system to minimize the cost functional equation (14).
4. Design of optimal tracking controller with zero steady-state error

Because the pair (A,B) is controllable and the pair (A,C) is observable, it can be proved that the pair ðĀ; B̄Þ
is controllable and the pair ðĀ; C̄Þ is observable. In fact, it is obvious that

Rank B̄ ĀB̄ . . . Ā
nþ2r�1

B̄

h i
¼ nþ 2r,

Rank C̄
T

Ā
T

C̄
T

. . . Ā
T

� �nþ2r�1

C̄
T

� �T
¼ nþ 2r.

By the optimal control theory, the optimal output tracking control law with zero steady-state error for Eq.
(12) associated with the cost functional in Eq. (14) can be expressed as

ūnðtÞ ¼ �R�1B̄
TlðtÞ; t40, (15)
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where l(t) is the solution of the following TPBV problem:

_̄xðtÞ ¼ Āx̄ðtÞ þ Ā1x̄ðt� tÞ � SlðtÞ,

�_lðtÞ ¼ C̄
T

QC̄x̄ðtÞ � C̄
T

QHzðtÞ þ Ā
TlðtÞ þ Ā

T

1 lðtþ tÞ; t40,

x̄ðtÞ ¼ f̄ðtÞ; �tptp0,

lð1Þ ¼ 0, ð16Þ

where S ¼ B̄R�1B̄
T
. Note that the TPBV problem in Eq. (16) has both time-delay and time-advance terms.

Obtaining the exact analytical solution to this problem is, in general, extremely difficult. We will propose a
sensitivity approach to simplify Eq. (16) and get an approximate optimal control law of Eq. (12) with the cost
functional in Eq. (14). Introducing a sensitivity parameter e, we construct a new TPBV problem with e as
follows:

_̄xðt; �Þ ¼ Āx̄ðt; �Þ þ Ā1x̄ðt� t; �Þ � Slðt; �Þ,

�_lðt; �Þ ¼ C̄
T

QC̄x̄ðt; �Þ � C̄
T

QHzðtÞ þ Ā
Tlðt; �Þ þ Ā

T

1 lðtþ t; �Þ; t40,

x̄ðt; �Þ ¼ f̄ðtÞ; �tptp0,

lð1; �Þ ¼ 0, ð17Þ

and a new optimal control law in the form

ūðt; �Þ ¼ �R�1B̄
Tlðt; �Þ; t40, (18)

where 0pep1 is a scalar sensitivity parameter irrelative to t.
Assume that ūðt; �Þ; x̄ðt; �Þ; lðt; �Þ are infinitely differentiable with respect to e at e ¼ 0, and their Maclaurin

series in e can be described as

ūðt; �Þ ¼
X1
i¼0

�i

i!
ūðiÞðtÞ; x̄ðt; �Þ ¼

X1
i¼0

�i

i!
x̄ðiÞðtÞ; lðt; �Þ ¼

X1
i¼0

�i

i!
lðiÞðtÞ, (19)

where superscript (i) denotes the ith-order derivative with respect to e at e ¼ 0 in Eq. (19). In the following
discussion, we assume that the series sum in Eq. (19) is convergent at e ¼ 1. Note that when e ¼ 1, the TPBV
problem of Eq. (17) is equivalent to that of Eq. (16). Therefore, the optimal control law in Eq. (19) can be
rewritten in the form

ū�ðtÞ ¼ ūðt; 1Þ ¼
X1
i¼0

1

i!
ūðiÞðtÞ. (20)

The solution of this optimal tracking control problem is given by the following theorem.

Theorem 1. Consider the optimal output tracking control problem for the augmented system described by

Eqs. (12), (4), and (14). The optimal output tracking control law with zero steady-state error can be given by

ūnðtÞ ¼ �R�1B̄
T

Px̄ðtÞ þ P1zðtÞ þ
X1
i¼1

1

i!
giðtÞ

" #
, (21)

where P is the unique positive-definite solution to the following Riccati matrix equation:

Ā
T

Pþ PĀ� PSPþ C̄
T

QC̄ ¼ 0, (22)

P1 is the unique solution to the following Sylvester matrix equation:

ðĀ
T
� PSÞP1 þ P1F ¼ C̄

T
QH, (23)
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gi(t) is given by the following ith adjoint differential equation:

g0ðtÞ ¼ 0,

_giðtÞ ¼ � ðĀ
T
� PSÞgiðtÞ � iPĀ1x̄ði�1Þðt� tÞ

� iĀ
T

1 ½Px̄ði�1Þðtþ tÞ þ gi�1ðtþ tÞ�,

gið1Þ ¼ 0; i ¼ 1; 2; . . . , ð24Þ

x̄ðiÞðtÞ is given by the following ith differential equation:

_̄x
ð0Þ
ðtÞ ¼ ðĀ� SPÞx̄ð0ÞðtÞ � SP1zðtÞ; t40,

x̄ð0ÞðtÞ ¼ f̄ðtÞ; �tptp0,

_̄x
ðiÞ
ðtÞ ¼ ðĀ� SPÞx̄ðiÞ þ iĀ1x̄ði�1Þðt� tÞ � SgiðtÞ; t40,

x̄ðiÞðtÞ ¼ 0; �tptp0. ð25Þ

Proof. Substituting Eq. (19) into Eq. (17) and comparing the coefficients of the same order terms with respect
to e, we obtain

_̄x
ð0Þ
ðtÞ ¼ Āx̄ð0ÞðtÞ � Slð0ÞðtÞ,

�_l
ð0Þ
ðtÞ ¼ C̄

T
QC̄x̄ð0ÞðtÞ � C̄

T
QHzðtÞ þ Ā

T
lð0ÞðtÞ,

x̄ð0Þð0Þ ¼ f̄ð0Þ,

lð0Þð1Þ ¼ 0, ð26Þ

and

_̄x
ðiÞ
ðtÞ ¼ Āx̄ðiÞðtÞ � SlðiÞðtÞ þ iĀ1xði�1Þðt� tÞ,

�_l
ðiÞ
ðtÞ ¼ C̄

T
QC̄x̄ðiÞðtÞ þ Ā

T
lðiÞðtÞ þ iĀ

T

1 l
ði�1Þ
ðtþ tÞ,

x̄ðiÞð0Þ ¼ 0,

lðiÞð1Þ ¼ 0. ð27Þ

Substituting Eq. (19) into Eq. (18), ūðiÞðtÞ can be expressed as

ūðiÞðtÞ ¼ �R�1B̄
TlðiÞðtÞ; i ¼ 0; 1; 2; . . . . (28)

Now we analyze the solution of ūðiÞðtÞ. When i ¼ 0, let

lð0ÞðtÞ ¼ Px̄ð0ÞðtÞ þ P1zðtÞ. (29)

From Eqs. (29) and (26), we can obtain the Riccati equation in Eq. (22) and the Sylvester equation in Eq. (23).
Under the given assumption, P is the unique positive-definite solution to Eq. (22). In order to prove the
existence and uniqueness of the solution to Eq. (23), we introduce the following lemma.

Lemma 1. (Lancaster et al. [12]) The Sylvester equation with respect to XARn�m

JX þ XN ¼ G (30)

has a unique solution, if and only if

liðJÞ þ ljðNÞa0; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m, (31)

where JARn� n and NARm�m are known matrices.
According to the optimal control theory of linear systems, the following inequality holds:

ReðliðĀ� SPÞÞo0. (32)
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By Assumption 1, the following inequality holds:

ReðljðF ÞÞp0. (33)

Hence

liðĀ
T
� PSÞ þ ljðF Þa0; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m. (34)

According to Lemma 1, the solution P1 of Eq. (23) is existent and unique. Then

ūð0ÞðtÞ ¼ �R�1B̄
T
ðPx̄ð0ÞðtÞ þ P1zðtÞÞ. (35)

ūðiÞðtÞ ði ¼ 1; 2; . . .Þ is given by the following recursive algorithm. Let

lðiÞðtÞ ¼ Px̄ðiÞðtÞ þ giðtÞ. (36)

Taking the derivative of Eq. (36) and substituting the first equation in Eq. (27) into it, we obtain

_l
ðiÞ
ðtÞ ¼ P _̄x

ðiÞ
ðtÞ þ _giðtÞ

¼ ðPĀ� PSPÞx̄ðiÞðtÞ � PSgiðtÞ þ iPĀ1x̄ði�1Þðt� tÞ þ _giðtÞ; i ¼ 1; 2; . . . . ð37Þ

By substituting Eq. (36) into the second equation in Eq. (27) we have

�_l
ðiÞ
ðtÞ ¼ ðC̄

T
QC̄ þ Ā

T
PÞx̄ðiÞðtÞ þ Ā

T
giðtÞ þ iĀ

T

1 Px̄ði�1Þðtþ tÞ þ gi�1ðtþ tÞ
� �

; i ¼ 1; 2; . . . . (38)

From Eqs. (37) and (38) we obtain Eq. (24).
By Eq. (32), for any of t, gi(t) can be described as

giðtÞ ¼ i

Z 1
t

eðĀ
T
�PSÞðr�tÞ PĀ1x̄

ði�1Þðr� tÞ þ Ā
T

1 Px̄ði�1Þðrþ tÞ þ Ā
T

1 gi�1ðrþ tÞ
h i

dr; i ¼ 1; 2; . . . , (39)

where x̄ði�1Þ and gi�1 are known terms. From Eqs. (26), (39) and (27), gi(t) and x̄ðiÞðtÞ can be calculated by the
recursive algorithm. Substituting Eq. (36) into Eq. (28), we obtain

ūðiÞðtÞ ¼ �R�1B̄
T

Px̄ðiÞðtÞ þ gðiÞðtÞ
	 


; i ¼ 1; 2; . . . . (40)

From Eqs. (35), (40), (18), (19) and (20), we obtain the optimal tracking control law expressed as Eq. (21). &

Remark 1. The infinite series
P1

i¼1ð1=i!ÞgiðtÞ in Eq. (21) is almost impossible to be solved precisely. In practical
engineering, we can obtain an approximate optimal control law by replacing N with a positive integer N. The
Nth suboptimal control law is obtained as follows:

ūN ðtÞ ¼ �R�1B̄
T

Px̄ðtÞ þ P1zðtÞ þ
XN

i¼1

1

i!
giðtÞ

" #
. (41)

We can select N according to the control precision of performance index. We give a designed algorithm of
ūN ðtÞ as follows.

Algorithm 1. Step 1: Obtain the desire output ~yðtÞ from Eq. (4), the value of P and P1 from Eqs. (22) and (23)
respectively. Get the 0th-order control law ū0ðtÞ from Eq. (41). Give a small enough number d40.

Step 2: Substitute ū0ðtÞ into Eq. (12), and then obtain y0(t). Calculate the value of e0(t) from Eq. (5) and J0
from Eq. (14). Let i ¼ 1.

Step 3: Obtain the gi(t) from Eq. (39) and x̄ðiÞðtÞ from the third equation in Eq. (25), respectively.
Step 4: Obtain the ith control law ūiðtÞ from Eq. (41). Substitute ūiðtÞ into Eq. (12), and then obtain yi(t).

Calculate the value of ei(t) from Eq. (5) and Ji from Eq. (14), respectively.
Step 5: If |(Ji�1�Ji)/Ji|od, then let N ¼ i. Output ūNðtÞ and stop. Else let i ¼ i+1 and go to step 3.

Remark 2. In the process of constructing disturbance compensator and the optimal tracking controller, we
only consider the frequencies of disturbances, no amplitudes and phases. So in this paper, the optimal tracking
control law is robust and always optimal for all choices of parameters except frequencies.
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Remark 3. From Eq. (41), we can see the first two terms are accurate solutions and only the last term is an
approximation. If gi(t) attenuates fast, the tracking control law in Eq. (41) will approach the optimal tracking
control law at less iteration times N.

Remark 4. Denote that

P ¼
� � �

P2 P3 P4

" #
,

where * is the unconcerned term, P2, P3, and P4 are matrices of appropriate dimensions. From Eqs. (11) and
(13), Eq. (41) can be expressed in the form

ūNðtÞ ¼ �R�1 P2xðtÞ þ P3x̄2ðtÞ þ P4x̄3ðtÞ þ B̄
T

P1zðtÞ þ B̄
T
XN

i¼1

1

i!
giðtÞ

" #
. (42)

We can see from Eq. (42) that the 5th term compensates the effect of time-delay. Obviously, if there isn’t a
time-delay term in Eq. (1), i.e., A1 ¼ 0, we can conclude that gi(t)�0.

Remark 5. The suboptimal control law ūNðtÞ in Eq. (42) contains the unknown state variable z(t) of the
exosystem in Eq. (4), which is physically unrealizable. In practical engineering, a reference input observer can
be introduced to make it physically realizable.

We now construct a reduced-order observer for the reference input’s state. It is well known that for the full
rank matrix H in Eq. (4), there must exist a constant matrix LAR(m�p)�m such that the matrix ½HT LT � 2

Rm�m is nonsingular. Let

T ¼
H

L

� ��1
¼ T1 T2

� �
; T�1FT ¼

F11 F12

F21 F22

" #
, (43)

where T1ARm� p, T2ARm� (m�p), F11ARp� p, F12ARp� (m�p), F12AR(m�p)� p and F22AR(m�p)� (m�p) are
constant matrices. In order to construct a reference input observer, we make the equivalent linear
transformation z ¼ T ~z. Denote that ~zT ¼ ½ ~zT1 ~zT2 �, where ~z1 2 Rp; ~z2 2 Rm�p. An equivalent system of
exosystem in Eq. (4) is obtained as follows:

_~z1ðtÞ ¼ F11 ~z1ðtÞ þ F 12 ~z2ðtÞ,

_~z2ðtÞ ¼ F21 ~z1ðtÞ þ F 22 ~z2ðtÞ,

~yðtÞ ¼ ~z1ðtÞ. ð44Þ

In Eq. (44), ~z1ðtÞ is just the reference input ~yðtÞ. We need only construct a reduced-order observer with respect
to ~z2ðtÞ. Noting that HT ¼ ½ Ip 0 � and the pair (F,H) is completely observable, obviously the pair (F22,F12) is
also completely observable. Construct the reduced-order observer as follows:

_rðtÞ ¼ F̂ rðtÞ þ Ĥ ~yðtÞ,

ẑðtÞ ¼ rðtÞ þ K ~yðtÞ, ð45Þ

where rARm�p is a constructed variable; ẑðtÞ is the observing value of ~z2ðtÞ; F̂ ¼ F 22 � KF 12; Ĥ ¼

F22K � KF 12K þ F 21 � KF 11; K is an undetermined coefficient matrix. In order to guarantee the speediness
and nicety of observer in Eq. (45), we can select matrix K such that all the eigenvalues of matrix F̂ are assigned
to appointed places.

Replacing z(t) with ½ ~yTðtÞ ẑTðtÞ �T in Eq. (42) and substituting Eq. (45) into Eq. (42), the suboptimal
tracking control law in Eq. (21) can be expressed as

_rðtÞ ¼ F̂rðtÞ þ Ĥ ~yðtÞ,

ūNðtÞ ¼ � K1xðtÞ � K2x̄2ðtÞ � K3x̄3ðtÞ � K4rðtÞ � K5 ~yðtÞ � K6

XN

i¼1

1

i!
gðiÞðtÞ, ð46Þ
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where

K1 ¼ R�1P2; K2 ¼ R�1P3; K3 ¼ R�1P4,

K4 ¼ R�1B̄
T

P1T2; K5 ¼ R�1B̄
T

P1ðT1 þ T2KÞ; K6 ¼ R�1B̄
T
. ð47Þ

Remark 6. The suboptimal ‘‘control law’’ ūNðtÞ obtained from Eq. (46) is the suboptimal control law of the
augmented system in Eq. (12). It is necessary to solve the suboptimal control law uN(t) of the original system in
Eq. (1). From Eqs. (8), (11) and (46), we have

_rðtÞ ¼ F̂rðtÞ þ Ĥ ~yðtÞ,

€uN ðtÞ þMOM�1uNðtÞ ¼ � K1xðtÞ � K2ðuNðtÞ þMvðtÞÞ � K3ð _uNðtÞ þM _vðtÞÞ � K4rðtÞ

� K5 ~yðtÞ � K6

XN

i¼1

1

i!
gðiÞðtÞ. ð48Þ

Let

x1ðtÞ ¼ rðtÞ; x2ðtÞ ¼ uNðtÞ; x3ðtÞ ¼ _uNðtÞ þ K3MvðtÞ,

xTðtÞ ¼ xT1 ðtÞ xT2 ðtÞ xT3 ðtÞ
h i

. ð49Þ

Then we obtain a physically realizable dynamic suboptimal tracking control law of the original system in
Eq. (1)

_xðtÞ ¼

F̂ 0 0

0 0 I

�K4 �K2 �MOM�1 �K3

2
664

3
775xðtÞ þ

Ĥ

0

�K5

2
664

3
775 ~yðtÞ

�

0

K3

K2 � K2
3

2
664

3
775MvðtÞ �

0

0

I

2
664
3
775 K1xðtÞ þ K6

XN

i¼1

1

i!
gðiÞðtÞ

" #
,

uN ðtÞ ¼ x2ðtÞ. ð50Þ

5. A simulation example

Consider a second-order linear system with sinusoidal disturbances described by Eq. (1), where

A ¼
0 1

�1 1

" #
; A1 ¼

�0:3 0:4

1 0:2

" #
; B ¼

0

50

" #
,

D ¼
0

50

" #
; C ¼ 20 0

� �
,

fðtÞ ¼ 0; vðtÞ ¼ 3 sinð1:5tÞ; t ¼ 1.

The desired output is given by

~yðtÞ ¼ 0:1 sinðtÞ,

and it can be described by Eq. (4), where

F ¼
0 1

�1 0

� �
; H ¼ 1 0

� �
; zð0Þ ¼

0

0:1

� �
.
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Choose the quadratic cost functional described by Eq. (14), where

Q ¼ 10; R ¼ 0:1.

The cost functional values at different iteration times are listed in Table 1 and the simulation results
are presented in Fig. 1. From Table 1, we can see that J14J24J3, that is, the cost functional values dec-
rease as iteration times increase and tend to a deterministic optimal value J* ultimately. Letting the
standard precision d ¼ 0.01, then we have |(J2�J3)/J3| ¼ 0.002od. So ū3 is considered as the approximate
Table 1

Performance index values and control precisions at different iteration times

i 1 2 3

Ji 68.4722 65.9685 65.8164

|(Ji�Ji�1)/Ji| / 0.037 0.002

0 2 4 6 8 10 12
-10

-5

0

5

10

15

20

time(s)

co
nt

ro
l l

aw

(b)

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

time(s)

ou
tp

ut
 &

 r
ef

er
en

ce
 in

pu
t

(a)

0 2 4 6 8 10 12
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

tr
ac

ki
ng

 e
rr

or

(c)

Fig. 1. Simulation curves of the system when i ¼ 1, 2, 3: (a) Curves of output y(t) and reference input ~yðtÞ, (b) curves of control law ūnðtÞ,

and (c) curves of tracking error e(t). - - - - - - - i ¼ 1, – � – � – � – i ¼ 2, —— i ¼ 3, – – – ~yðtÞ.
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Fig. 2. Simulation curves of the system when a ¼ 2,3,4: (a) Curves of output y(t) and reference input ~yðtÞ, (b) curves of control law ūnðtÞ,

and (c) curves of tracking error e(t). - - - - - - - a ¼ 2, —— a ¼ 3, – � – � – � – a ¼ 4, – – – ~yðtÞ.
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virtual optimal control law. The simulation results demonstrate the effectiveness of the proposed approach in
this paper.

In order to verify the robustness of designed controller, we choose different amplitudes of sinusoidal
disturbance. The simulation curves of y(t), e(t) and ūNðtÞ when a ¼ 2, 3, 4 are presented in Fig. 2. From Fig. 2,
we can see that designed approximate optimal control law can achieve disturbance rejection with zero steady-
state tracking error for all choices of such parameters except frequencies. So the designed tracking controller
in this paper is more robust with respect to the disturbances.
6. Conclusions

In this paper, the proposed optimal tracking control law with zero steady-state error has been robust and
achieved the aim of the sinusoidal disturbances rejection as long as the closed-loop system is stable. For a class
of time-delay systems, a sensitivity approach has been developed to avoid solving the TPBV problem with
both time-delay and time-advance terms directly. The proposed algorithm has better convergence properties.
In contrast to feedforward control, the approach proposed in this paper is more reliable, less expensive and
easy to implement.
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